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IN ERGODIC THEORY 

BY 

ANDRI~S DEL JUNCO* 

ABSTRACI 

Let To be the translation x - x + a (rood 1) of [0,1), a irrational. Let T be the 
Lebesgue measure-preserving automorphism of X = [0,3/2) defined by Tx = 
x + l  for xE[0,1/2), T x = T o ( x - 1 )  for x(-[1,3/2) and Tx=Tax for 
x•[1/2,1), i.e. T is To with a tower of height one built over [0,1/2). If 
a is poorly approximable by rationals (there does not exist {p,/q.} with 
la -p , /q ,  [= o (q -2)) and h is a measure on X k all of whose one-dimensional 
marginals are Lebesgue and which is @,~_~ T ~ invariant and ergodic (l > 0) then 
h is a product of off-diagonal measures. This property sutfices for many 
purposes of counterexample construction. A connection is established with the 
POD (proximal orbit dense) condition in topological dynamics. 

w Introduction 

Ornstein  [11] const ructed an example of an au tomorph i sm of a probabil i ty 

space which commutes  only with its powers and has only the trivial factor  

algebras. O the r  examples  have been found since then - -  perhaps  the simplest is 

the weak-mixing but  not  mixing au tomorph i sm of Chac6n  (see [5], [7]). All of 

these examples  are const ructed with malice afore thought ,  ra ther  than being 

au tomorph isms  which occur  "natura l ly" .  It is reasonable  to ask whether  this 

behaviour ,  which may be regarded as pathological,  can occur  within some 

natural  family of au tomorphisms ,  for example interval exchanges on [0,1). Our  

purpose  here  is to give a natural  family of examples  - -  in fact they are interval 

exchanges on three intervals. 

To  describe this family, which was first considered in a topological  context  by 

Furts tenberg,  Keynes  and Shapiro [4], let T, be the translation x ~, x + a (mod 

1) on [0,1) and let T be Ta delayed by one unit of time on [0,1/2), or, in the 
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language of skyscrapers, T~ with a second story added above [0, 1/2). Identifying 

T[0,1/2) with [1,3/2), T can be defined explicitly on [0,3/2) by 

I x + l ,  

Tx = ]  T.(x - 1), 
l Tox, 

x E [0, 1/2) 
x E [1,3/2) 
x ~ [1/2, 1). 

Say that a is well approximable by rationals if there exist rationals p, /q ,  such 

that ta - p , / q ,  I = o (q~)  and poorly approximable otherwise. We will say that 

an automorphism S of a probability space (Y, ~, v) is simple if any measure A on 

(y2,.~z), both of whose marginals are v, which is S x S invariant and ergodic 

must be u x u or an off-diagonal measure, that 

Uk( A ) = tz {X : (x, Skx ) ~ A }. Simplicity is sufficient 

has trivial centralizer (see [12]). We will show that 

is, a measure of the form 

to show that S is prime and 

if a is poorly approximable 

then T is simple. Thus, for example, one can take ot a quadratic surd, say ~/2, 

and T will be prime with trivial centralizer. It is well known that there are 

uncountably many poorly approximable a (it also follows from our Lemma 2.3) 

although the set of such has measure 0. 

Simplicity of an automorphism is just the lowest level of the property of 

minimal self-joinings (MS J) introduced by Rudolph (see [12] for the definition). 

T is not MSJ because it is clearly isomorphic to its inverse. We can show 

however that if a is poorly approximable and l > 0, then any (~),~, T' invariant 

and ergodic measure on X k with marginals/x must be a product of off-diagonals. 

An off-diagonal measure u on X k' is one of the form u(A)=~)~_-~ T~"~/z~ 

where /xa is diagonal measure on X k'. The main interest of an MSJ automor- 

phism is its versatility as a source of counterexample constructions (see [12]) and 

we observe that this restricted version of MSJ is sufficient for most such 

constructions. In fact it follows from results in [6] that any measure on X k with 

marginals/~ which is (~)~=~ T "~ invariant and ergodic, where l(i) > 0 Vi, must be 
a product of off-diagonals. 

In [4] a topological analogue of simplicity called proximal orbit density (POD) 

was defined and established for (a topological model of) T whenever a is 

irrational (and also for more general "holding" sets [0,fl), ~ ~ na, in place of 

[0,1/2)). The definition of POD predates any explicit mention of simplicity in 

ergodic theory. We establish a sufficient condition, satisfied by the topological 

model of T when a is poorly approximable, for simplicity to imply POD. 

In section 2 we describe symbolic dynamics for T following [10] and [1] which 

reduce the study of T to a shift. We then show that T is weakly-mixing for any 

irrational a. Although this is essentially known, even in a more general context 
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(it follows from results in [13], [14]) we include a proof here using the block 

structure of T-names, as a warm-up for the arguments of sections 3 and 4. In 

section 3 we show that T is simple for any poorly approximable a. Section 4 

extends this to higher cartesian powers. In Section 5 we establish some 

connections with the POD condition and conclude with some open problems. 

We shall assume throughout the remainder of the paper that a < 1/2. There is 

no loss of generality since the T's corresponding to a and to 1 - a  are 

isomorphic in an obvious way. 

w Symbolic dynamics for T and weak-mixing 

In this section we will analyze the structure of T-names. This analysis borrows 

heavily from [10] and [1]. As shown in [1] the structure of To-names depends on 

the modified continued fraction expansion (m.c.f.e.) of /3  = 2a. To define this 

expansion, for x ~ (0,1] let 

n ( x ) =  [ 1 ] +  1, s ( x ) = n ( x )  1 
X '  

so s (x )~ (0 ,1 ] .  Set nk(x)= n(s~x),  k >-0. In [10] it is shown that the partial 

quotients 

1~no- 1/n, - 1/n2 . . . .  1/nk 

converge to x as k----, oc. The m.c.f.e, of x is 

1~no- 1/n~ . . . .  . 

Note that hE(X)>-2. NOW set 13 = 2 a  and nk = nk([3). 

We begin our analysis with T0-names, for which we use the partition {Po, P~}, 

Po = [0,1 - / 3 ) ,  P, = [ 1 - / 3 , 1 ) .  

By the T~-name of x ~(0 ,  1] we mean the sequence ~: E{0, 1} z defined by 

~:(i) = (5 if T ~ ( x ) E  P~. Define inductively the k-blocks B~(0) and Bk(1) of O's 
and l's, k - -1 ,2 , . . . ,  by 

B , ( 0 ) = 0  % l l ,  

Bk+,(O) = BE (0)"'-' BE (1), 

B,(1) = 0%-21, 

Bk+,(1) = Bk (0) " '~ Bk (1). 

Note that if naN, = 2, Bk+~(1)= Bk (1). We refer to Bk (0) and Bk (1) as T~-k- 

blocks. 
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LEMMA 2.1. Every Ta-name can be decomposed, in a unique way, as a 

concatenation of T~-k-blocks. I f  IBk(~), ~ = 0 or 1, occurs in a To-name then the 

Bk (~) is one of the blocks in this decomposition. 

PROOF. To avoid typographical difficulties in this proof we will write r -- T~ 

when dealing with induced automorphisms. We have n o -  1 _-< i/fl < no so 

(i) ( n o -  1)[3 _-< 1 < n,,[3. 
Since [3no - I = [3s ([3), (i) implies that the induced automorphism riot)is given by 

rloa~(x)=x +[3s([3) (mod [3). 

Let rL0.a~ denote the T~-return time function to [0,[3). By the T~-n-name of x we 

mean the T~-name restricted to [0,n - 1]. (i)implies that for x E [fl - fls(fl)) the 

Ta-rloo)(x)-name of x is Bz(1), while for x E[0,[3-f lcr(f l ) )  it is BI(0). This 

implies that any Ta-name is a concatenation of 1-blocks, and that if B~(0) or 

B1(1) occurs at i in the Ta-name of x and is preceded by a l then T~x E 

[0,[3-  fltr(fl)) or [ [3-f l t r ( f l ) , f l )  respectively. 
Now set [3k = f l s ( f l ) . . . sk  (fl) and suppose that for some k we have shown 

I(k  ):rto.~k~(x ) = x + flk,t rood [3k, 

J (k) : for  x E [0,[3k - [3k~) the To-rlo.ao(x)-name of x is 

Bk(0) and for x E [ilk - flk+~ ,ilk) it is Bk (1). 

K (k) :if Bk (0) or Bk (1) occurs at i in the T~-name of x 

and is preceded by a 1 then T~x E [0,ilk - flk,~) or 

- [3k§ 

(We have just shown I(1), J(1) and K(1).) Note that J(k )  implies a decomposi- 

tion of any T~-name into k-blocks and K ( k )  implies the desired uniqueness of 

that decomposition. By I (k )  and the analysis of the previous paragraph, applied 

to sk~'[3 rather than fl and scaled down to [0,[3k), we see that 

= x + [3 s [ 3 )  = x + 

so we have I (k  + 1). Moreover if we consider Zlo.~,rnames with respect to 

P, - [[3k -/3k§ ,/3k)} and denote by r k the return time to {P~ = [0,[3k -- [3k+,), ' -- to.~.,) 
[0,/3k+1) under rl0.B~, again as in the last paragraph we see that for x E 

r k [0,[3k+l--[3k+2) this ~'to.~)-to.t3~+,)(x)-name of x is 0"~-~1 while for x E 

[flk+,--[3k+2,[3k+,) it is 0~-21. By J (k )  we get the T~-rlo.~.,) (x )-name of x by 

k (x)-name by B~(0) and Bk (1). In view of replacing O's and l 's in the rlo.~o-r~o.o~,~ 
the definition of B~,(O) and B~§ this means that J(k + 1) holds. Finally if 
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Bk., (8), 8 = 0 or 1, occurs at 0 in the To-name of x and is preceded by a 1, then 

by K(k)  its component k blocks are blocks of the decomposition implied by 

J(k),  and 0 nk*,-' 1 or 0 ", ~-z 1 occurs at 0 in the rjo.o,9-name of x and is preceded by 

a 1. Thus we see that x ~[0,~k+l--/3k+2) or [/3k+l--/3k,2,/3k), which gives 

K(k  + 1). []  

We shall refer to k-blocks in the k-block decomposition of a T0-name as 

genuine k-blocks. Note that for example Bk(1) occurs "falsely" in BE(O). 
We will need characterizations of irrationality and poor approximability of a 

(equivalently of/3 -- 2a )  in terms of the m.c.f.e, of/3. The first of these can be 

found in [10]. 

LEMMA 2.2 (Keane). [3 is rational if and only if n~ = 2 for all sufficiently large 
k. 

LEMMA 2.3. fl is well approximable if and only if {nk} is unbounded or 
contains arbitrarily long runs of 2's. 

PROOF. For x ~ (0,1], x is small if and only if n(x) is large. On the other hand 

if 1 - x is small n(x) is 2 and 1 - s(x) is again small, so {he(X)} begins with a long 

run of 2's. Also, if x < 1 - 8 and x > 21 then s(x) = 2 -  1/x < 1 - 8/x < 1 - 2 8 .  It 

follows that if x begins with a long run of 2's then 1 - x is small. Summarizing, 

what we have to show is that/3 is well approximable if and only if limHsk(fl)tt = 

0, where ttx H = min({x}) for any x E R, {x} the fractional part of x. 

Now suppose fl is well approximable, 8 E (0,1) and choose e such that 

8 > 2 e =  i f - l "  

(In particular 1 > 8 > e.) Now find plq such that I/3 - p l q l <  elq 2 or, equival- 

ently, find a q such that IIq/3 I1< elq. We want to show llsk(/3)ll< 8 for some k 

and we may suppose p < q, otherwise 11/3 II < elq 2< 8 and we're done. Then we 

have 

1 q (i) I -p < e 8 $ <p2" 

since e < 1. Setting 

qt = p  < q  and e, = 

! 

ep 2 if p > 1 
p 2 - 1  

8 

p2 P 
q 

=<2e if p = 1 
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(i) implies Ilq~/ta tl < et/q, so 

Ilq,s (/3)11 < e,/q,.  

Applying the same argument  to s(/3) and continuing in this way we obtain 

q = q o > q l > q z > ' ' ' > q k  = l 

and e = e o , e ~ , ' " , e k  such that 

e~_lq~ for  i < k, ek <2ek-~,  e, = q ~ - 1  

and llq,s'(/3)ll< e,/q,. Thus for i <  k 

, = ~ q ~ - I  .. j ~ - I  2" 

In particular e, < 812 < 1 which is necessary to cont inue the a rgument  at each 

stage. Also ek < 2ek-a < 8 so 

l[sk(~)tl--IIq~s~(~)ll < 8/qk = 8, 

as desired. 

For  the converse suppose that limtlsk(t~)ll = 0, 8 E (0,1) and choose e such 

that 

e I~I (1 - [t(t  + 1)]- ~) -1 < 6 

and k such that 11s~(/5)[[ < e. Note  that if x ~ (0,11 and [[qs(x)[[ < e/q with e < 1 

then [[q/xl[< ~/q so there is a p such that 

q x -  p < -  q '  

and necessarily p ~ q since e < 1. If p > q we have 

e e < e 

5) ! 
}q - p x l < - - - i <  - 

qx q - p q 

Thus,  setting e ' =  e p / ( p -  l /q)  and q '  = p  we have 

[[q'x I] < e ' /q ' .  

If p = q  

(ii) ] q - q x ] <  ex/q < e/q 
so ]]qx ]] < e/q so we may take q '  = q, e '  = e to get (ii). Now set qo = 1, eo = e, so 
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Ilqos~(~)ll<E/qo. By the above remarks  we obtain qo<-q,.. .<=q, and eo, 

e ~ , " ' , e k  such that 

e~qi+l if q~§ ei+, = e, if q . ,  =q i .  ~i+l : -  1 

qi+l---- qi 

Thus 

e r = E  

]]q,s (/3)1] < e,/q,. 

)-'< - 
i-o qi~lqi ,-~ 

qi+l >ql 

In part icular  each e, < 1 so the argument  can be continued.  Taking r = k 

Ilqt/3 II < 8/qk. 

Since 8 is arbitrary,  fl is well approximable .  [ ]  

If ~: is a finite string we denote  its length by I~l. 

LEMMA 2.4. I f  fl is poorly approximable there is a c > 0 such that I Bt (1)1 > 

(l + 2c)1Bk (O) l for all k such that nk-t > 2. 

PROOF. First observe that if nk-~ > 2 then [ Bk (1)1 > 11Bt (0) l. If k * is the least 

integer  greater  than k for which n k.-i > 2 then k* - k is bounded  (Lemma 2.3) 

and Bk._ t (1)=B~(1) .  Since {nk} is also bounded  there  is a c ' > 0  such that 

[Bt._,(1)[ >~lBk(0) l  > c ' [Bt ._ t (0 ) l .  This implies that there is a c > 0  such that 

I Bk. ( l ) l  > (~+ 2c)1B k-(0)l. [ ]  

Next we look at T~-names, for  which we use the part i t ion {O,,O-~}, 

O~ = [0,~), O_, = [~,1). Define k-blocks At(0) ,  A k ( - 0 ) ,  Ak(1) and A k ( -  1) 

( 0 #  - 0 ! )  by 

A,(0)  = 1 ~o 

A1(1) = 1"o-', 

A , ( -  0) = - A,(0) ,  

A , ( -  1) = - A,(1),  

At  +,(0) = At  (e,0)Ak (e20)Ak (e30)"" Ak (e.~_~O)At (e. k 1), 

Ak+ , ( -  0) = - At+,(0),  

Ak+,(1) = Ak (e,O)AE (e20)Ak (e30)" �9 �9 Ak (e..-20)Ak (e.~-, 1), 

Ak+,( - 1) = -- Ak.,(1),  

Ak+,(-- 1) = - Ak+,(1), 
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where the signs ei are given by e, = ( -  1) p~'-'~, p = 0 or 1 according to whether 

AE (0) ends in + 1 or - 1. In other words, in k + 1-blocks there is always a sign 

change across the end of a k-block. We adopt the convention that when we write 

a string of k-blocks 

A~(• ~, = 0 o r  1 

the leftmost sign is arbitrary and the others are chosen so that there is a sign 

change across the end of each k-block. We now have two types of k-blocks, the 

AE'S and the Bk 's, but no confusion should arise if we keep in mind that the Bk's 

occur in Ta-names and the AE'S, as we shall see, occur in T~-names. When it is 

necessary to make a distinction we will speak of T~-k-blocks and T~-k-blocks. 

LEMMA 2.5. Every T~-name is for each k uniquely a concatenation of 

k-blocks, in such a way that a sign change occurs across the end o[ each k-block. 

If - 1AE(0)----- 1 or -- 1Ak (1)----- 1 appears in a T~-name the Ak(O) or Ak(1) is one 

o[ the k-blocks o[ this unique decomposition. The same holds [or appearances o[ 
1Ak(--0)•  1 and 1AE(-  1) -  1. Any Ak( +---O) or Ak( + -- 1) in the k-block decom- 

position o[ a name is preceded and [ollowed by Ak(•  which are not 

necessarily part o[ the decomposition, but whose sign is governed by the require- 
ment that there be a sign change across the end of a k-block. 

PROOf. Write P(x) = e if x ~ P,. Let ~ :x ~ 2 x  (modl)  so that ~Ta = T ~ .  

Note that P ( x ) ~  P(T~x) precisely when x ~ [~- a,�89 [ 1 -  a, 1), that is ~(x)  

[1-/3,1).  (Recall that a < � 8 9  Thus P(T~x)~P(T~*Ix)  precisely when 

T~q~(x)E[1-/3,1),  that is when the T~-name of ~(x)  has a 1 in the ith 

co-ordinate. 

Now let ~ be the T,,-name of x and r/ the T~-name of ~(x). Since B~(0) and 

B,(1) have l 's only in the rightmost position we see that where there is a genuine 

B,(0) or B~(1) in rl there is a A~(-+0) or A~(--- 1) in s r. The converse is false 

A~(1) appears inside A I ( 0 ) -  but we do have that if - 1A~(0)- 1 or - 1A~(1)- 1 

appears in s r the A~(0) or A~(1) corresponds to a genuine 1-block in r/. One then 

argues by induction that genuine k-blocks in 7/correspond to k-blocks in s r (and 

there is a sign change across the end of each of these k-blocks in s r because 

k-blocks in r/ end in 1) and that any appearance of a k-block in ~r with its 

flanking --+ l 's must correspond to a genuine k-block in r/. Thus we can also 

speak of genuine k-blocks in s c. 

It is immediate by induction that A~(0) begins with A~(1) and (without 

induction) that A~(0) ends with A k ( -  + 1). It follows that a genuine AE(• or 

A~ ( -  1) (in fact it is only Ak (-+ 1)'s which may be "false") is flanked by (possibly 

false) Ak(•  1)'s whose sign is evidently governed as claimed. [] 
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We would like to know how the signs of the k-blocks in a To-name succeed 

each other. Since Ak(0) and Ak(1) begin with 1 what we need to know for each k 

is the vector ek = (ek(0),ek(1)), called the kth parity state, where Ak(6) ends 

with ek (r ~ = 0 or 1. Denote by Sk (~5) the sum of the entries in Ak (6). Our next 

lemma, taken from [1], is a diagram which shows how the nk govern the parity 

state transitions (and in particular that ( -  1 , -  1) is not a possible state) and also 

that each parity state entails a certain condition on Sk(0) and Sk(1). Note that 

e, = ( + 1, + 1) and S,(0) - S,(1) = 1. 

{ e k = ( + l , + l )  ' 
& (0) - Sk (1) = 1 } 

LEMMA 2.6. 

1 
sk l,_ 1'}3"eve~ 

n~ odd / ~ ,  odd 
r  n~ even or odd 

{ 
, & (0) = I 

n~ even 

For example, if ek = ( + 1, -4- 1) then SE (0) -- Sk (1) = 1 and if also nk is odd then 

ek = ( +  1 , - - 1 )  (and Sk(1)= 1). Verifying the diagram is a direct check. 

Finally we come to T-names for which we use the partition 

R = {R, = [0,~) t_J T[0,~), R_, = [', 1)}. 

R is a generator for T since O is a generator for T~. Let the k-block (for 

T-names) Ck (3), r = _+ 0 or -+ l, be obtained by inserting a + 1 after each + l in 

AE(~). Note that, for example, C k ( - 0 ) ~ - C k ( 0 ) .  Evidently the Ck(cS)'s 

obey the same inductive formation rule as the AE(cS)'S. Expressions like 

C k ( -  + 6 , ) . . .  Ck(---&) obey the same convention that we adopted for the Ak's. 

Also [Ck(-+ 6)] ' is shorthand for C~(-+ 6) .. .C~(-+3) (l terms). Since T-names 

are obtained by doubling the l 's in To-names the following lemma is an 

immediate consequence of Lemma 2.5. 

LEMMA 2.7. Every T-name is, for each k, uniquely a concatenation of 

Ck (t~)'s, 6 = _+ 0, + 1. If  - 1C~ (6) +- 1 appears in a T-name the Ck ( +- ~ ) is one of 

the k-blocks in the k-block decomposition (called a genuine k-block) and is 

preceded and followed by Ck (+- 1)'s. The kth parity state governs the succession of 

signs of k-blocks in a T-name in the same way as in a T,.-name. 

We adopt the shorthand Ck(3) = r Also if C = C~ (6) we write C-  = C k ( -  6) 

(C-  ~ - C). If s r = C , . . .  C, is a string of r k-blocks we write so? = C t " "  C, .  If s r 
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is itself a k'-block, k ' >  k, s c = C~(8) then C k ( - 8 ) =  C T " "  C7, so there is no 

ambiguity in this notation. Observe that Sk (8) = 16k I - I -  6k I so that Lemma 2.6 

translates into certain statements about the I gk I, for exatnple, ek = (+  1,+ 1) 

implies 10k- lk I--I--0k lk I = 1, which will be the key to our later arguments. 

If {ak} and {bk} are sequences ak -- bk means ak/bk --~ 1 and ak <~ bk means 

lim ak/bk <= 1. 

LEMMA 2.8. I Ck (8)1 ~ I Ck ( - 6)1 for 6 = 0 or 1. I f  a is poorly approximable 

there are constants 0 < c, C < ~ such that Ilk I > (! + 2c)IOE I for each k such that 

nk-~ > 2, and  the distance between successive +- Ok's in x @ X is bounded by C [0k I 

and also the distance between successive + l k ' s  is bounded by C[0k [. 

PROOF. By unique ergodicity of T~ 

]Ck(6)l--11Ak(6)l = 31Ak(-- 6 ) l - I C k ( -  8)[. 

Thus the existence of c follows from Lemma 2.4. The existence of C is an easy 

consequence of the boundedness of {nk } and of runs of 2's in {nk }. [] 

LEMMA 2.9. I f  C , " "  C, is a string o f  k -b locks  the frequency of  occurrence o f  

C, . . . C, among  strings of  r k -b locks  in x ~ X is the same as that o f  C ;. . . C , .  

PROOF. By unique ergodicity of T~ any x E [0,1) is generic - -  that is, its 

Ta-name s c has the right frequencies of occurrence of finite strings. But the 

Ta-name of x + ~, which is also generic, is -~ .  This means that Lemma 2.9 is 

true for To-k-blocks in T~-names and Lemma 2.9 itself follows immediately. [] 

If x E X the genuine k-block in x containing the 0th co-ordinate of x is called 

the time 0 k-block in x. If this block has length l the k-block level of x is the 

integer i, 0 =< i < 1 which gives the position of time 0 in the time 0 k-block, that is 

the time 0 k-block in T - i x  begins at time 0. Note that the partitions Pk of x 

according to the time 0 k-block and k-block level of x increase and generate 

up to null sets. 

We conclude this section by establishing weak-mixing, using some variations 

on a standard argument (e.g. [2,3]). 

THEOREM 2.10. T is w e a k - m i x i n g  for all irrational a. 

PROOF. Since /3 is irrational nk > 2 infinitely often. We continue to use the 

notation k* for the least integer greater than k such that nk.-, > 2. By Lemma 

2.6 either Ck = (+  1, + 1) infinitely often or e~ = (+  I , -  1) eventually. In the 

second case nk is even eventually so we can find infinitely many k such that 
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nk > 3. In the first case we can find infinitely many k such that ek = ( + 1, + 1) and 

either n~_l > 2 or hE-2 > 2. To see this choose ek. = ( +  1, + 1) and, if nk.- ,= 2, 

suppose hE. , i > 2, nk.-~ = 2 for 1 =< i --_< I. Then by Lemma 2.6 ek. ~ alternates 

between ( + 1, + 1) and ( - 1, + 1) as i runs from 1 to l so we may take k = k '  - l 

or k ' - l + l .  

Now if fo T = ,~f then Ifl  = 1 since T is ergodic, so given e > 0, by the above 

remarks we can find k as large as we wish and f such that  f l f - f l d t t  < e ,  

I l l  = 1, f ( x )  depends only on the time 0 k-block and k-block level of x and one 

of the following holds: 

(i) ek=(+l,+l), n k > 2 ,  

(ii) e k = ( + l , + l ) ,  n k = 2 a n d e i t h e r  n k - t > 2 o r  nk-2>2,  

(iii) ek = ( + 1 , - 1 ) ,  nk > 3 .  
In each case we will argue that )t is close to 1. 

If (i) holds choose k + l -b locks  C and D such that the frequency of 

occurrence of CD among k + 1-block pairs in x E X is greater than 1/16. (This is 

possible since there are only four types of k + 1-blocks.) Note that C and D 

both begin with --_ 0k since nk > 2 and that the signs of k-blocks in x alternate 

since ek = ( +  1, + 1), so we see that C and D contain a common substring 3' 

consisting of at least n~ - 2  k-blocks -+Ok. Suppose that 3, occurs at the i th and 

j th  co-ordinates of C and D respectively and set l § = j - i + [ C [. 

Since [ depends only on the time 0 k-block and k-block level, [o T ~" ( T i x )  = 

[ ( T * x )  for indices i within the 3" in the C of any CD in x. Thus for such indices i 

I fo  T "  ( r ' x ) -  ;t " f ( T ' x ) l  = [1 - ;t'" I , 

since If] = 1. These indices occur in x with frequency greater than 

13'l 1 (nk - 2 ) 1 - 0 ~  F 1 
ICDI 1-6 > 2nkl0 l 1--6 

1 1 
> ( ~ -  ~ )  1-~ I/-oOi I > 2---~ 

for large k (10k t - I - 0 k  t)- Moreover  since fo  T'" = A " f  

2E > ll f o T "  - f o T "  lll + ll a " f - x " f ll, 

> f l f o T " - a "  f l d t ,  

§ I 
> l l - ) t  1200 , 
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by calculating the integral as a time average over an orbit, so 

[1- A"[ < 400e. 

Now by Lemma 2.9, C D- also occurs with frequency more than 1/16. If y-  

occurs in C- and D at the i'th and j ' th co-ordinates respectively and 

l - = j ' - i ' + l C  I then we can argue just as above that 

l I - ,~ '  I < 400e, 

so 

(iv) I I - h ' "  ' l  <800e.  

Since C ends with a single -+ lk and since the signs of k-blocks in x alternate, l+ 

is the length of a string ~c of r k-blocks, r even, consisting of r - I • 0k's and one 

-+ lk. Since I- is the length of s c- we see that 

II+-I  I = 1 0 k -  l ~ l - / - 0 k  1~1-- 1 

(Lemma 2.6) so (iv) becomes I1 - A I< 800e. 

In case (ii) let t _-> 1 be the least positive integer such that nk § > 2, so we have 

Ok+, = 0 k - - l k l k ' ' ' •  (t •  

lk+t ~ lk .  

Since nk+, > 2 both 0k+,,j and lk+,.t begin with Ok+, so x E X is a concatenation 

of blocks A , A  , B , B -  where A =0k+, and B =0k+,-+l~. Choose C and D 

blocks of this type such that CD occurs in x with frequency greater than 1/16. 

Since C and D both contain at least one -1~,  C and D have a common 

substring y consisting of at least t --+ lk's. Now if l '  is the distance between the 

initial indices of y in C and in D we can argue as in (i) that 

>fl-, "llcol 1---6 

t l lkl  1 
a l I - J t "12 ( iO~  [+( t  + l)II~ 1)~ 

t ) l , I  1 
~>[1 - A " 1 2 ( t  +4)Ilk 11 16' 

where we have used nk_, > 2 or nk-2 > 2 to see that 10k [<~ 31 lk I" Thus, for large 

k, I 1 - )l ~'[ < 400e. Considering C- and D-  and the corresponding l- as before 

we see that I1 -A ' -1<400e  and since It §  as before we find that 

I1 - ) t  [ < 800e. 
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In case (iii) choose a k + l-block pair CD with f requency at least 1/16. Both C 

and D contain at least nk - 2 _  0k's so they have a common  3' consisting of at 

least nk--3 --+0k'S.(If nk were 3 one might have C D = O k - - l k - - O k l k ,  for 

example.)  Defining l + as before  

1 
2e > l l - a " l [  ]C~ j 1- ~ 

>ll  _ A,.l(nk -3)10k I 1 >  ii_ X,.{ 1 1 
2nk 10k I 10 16' 

so for  large k, { 1 - A ~ ' I < 4 0 0 e .  Now since the final -----lk in C is followed by a 

+-Ok in D of the same sign, l § is the length of a string of r k-blocks,  r odd,  

including just one -+ lk. Thus if l-  is defined as before  

I t ' - t - l - - I l k  I - l -  lk I-- 1, 

so ] 1 - Z [ < 800e. Since e is arbi t rary Z = 1. [ ]  

w Simplicity of T 

Our  goal in this section is to prove 

THEOREM 3.1. If  a is poorly approximable then T is simple. 

COROLLARY 3.2. If Ot is poorly approximable then T is prime and has trivial 
centralizer. 

To  prove 3.1 suppose A is T • T invariant and ergodic with marginals ~ and 

choose a sequence z = (x ,y)  E X x X which is generic for A. Identifying X • X 

with ( { I , - 1 }  • { 1 , -  1}) z we will write z as a sequence of pairs 

x ( -  1)x (0)x (1) 
Z ~ . . . . . .  

y ( -  1 )y(0)y(1)  

Say a finite string 3, E ({1, - 1} • {1, - 1}) ~ is e - r -gener ic  (l > r) if the f requency of 

occurrence in it of any string ~: in ({1 , -  1} • { 1 , -  I})' is within e of A (so). Given e 

and r if k is sufficiently large then any substring 3' of z of length greater  than 

c llk I beginning no more  than 10cI0k.I away from time 0 in z is e - r -gener ic  (see 

Lem ma  2.8 for the definitions of c and C). Fix such a k such that also nk-, > 2 

and call such a 3, substantial. Wc will say that a configuration of k-blocks in z is 

forcing if it forces the existence of substantial strings 3', and 3'2 in z such that 

3't "Or ~t 3'2 rio r/I-i  
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Note that this implies 2 e - ( r  - 1)-I x T-invariance of h in the sense that for any 

cylinder E of length r - 1  in X x X 

I X ( E ) -  X((I • T)E)J < 2e. 

We introduce the following convenient notation for forcing configurations. If 

A I ' "  A, and B t " "  B, are strings of k-blocks in x and y we write 

A I " ' A i - I  A i - " A ,  
Bi " Bi 1 B~ . . .  B ,  

to mean that the initial _+ lk'S in A, and B~ (which may be all of A,  and B~) 

overlap in at least c I1~ I indices and the same is (necessarily) true for the final 

-+ lk's in A~-I and B,_I (but not necessarily for other A, and Bs). We say the 

initial (final) --- IE'S in A, and B, (A,_~ and B~_~) are left (right) aligned. To see 

that a configuration is forcing we will usually have to look at (possibly) false 

- l~'s as described in Lemma 2.7 and we indicate these by -+ I.E. The substantial 

strings y~ and "/2 of a forcing configuration will always be the overlap of the 

aligned initial or final - lk's in some pair of k-blocks in x and y and we indicate 

which k-blocks by underlining. Here are some examples of the use of this 

notation. 

If ek = (+  1, + 1) the configuration 

F(i) 

is forcing because it implies 

ok[ 
0k 

+i,  i, 

and the separation between the initial indices of the --lk's upstairs is [lk --0El 

while downstairs it is [--lk0k[ and [ l k - -0k l - - l - - l k0k [=  1. (Here we have 

ignored the difference in length between Ok and - Ok in order to left align them. 

This is unimportant because of Lemma 2.8 - -  the initial -- lk's will overlap in 

almost c[lk[  - -  and we will do this consistently.) Other examples of forcing 

configurations are (with the explanation in each case following the colon): 

ek = (+ 1,+1):  

F(ii) 

I i lkOk : --lkOk --lk 
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F(iii) 

F(iv) 

F(v) 

F(vi) 

ek = ( - 1 , + 1 ) :  

F(vii) 

F(viii) 

-ok r 
Oh 

lk 

- l k  

I - lk - ik I - lk 
Oh : ik ik 

lk I xk 
Oh : - L  ik 

-Oh _ik 

lk I d0k I lk - 0 ~  lk -Ok 

In addition the negative of any forcing configuration is forcing. 

We will say that a finite string occurring at i in x (or y) attracts itself (with shift 

j - i) if the same string occurs at j in y (or x)  and tJ - i I < c Ilk I- The key to 
Theorem 3.1 is the following lemma. 

LEMMA 3.3. Either there is a forcing configuration of k-blocks or 

x [ - C I0k. I, C [Oh. [] attracts itself. 

PROOF. We assume that there is no forcing and show that the attraction 

holds. Let us say strings in x and y overlap substantially if their overlap is 

greater than c f lk[ in length. To prove the lemma we distinguish six cases 

according to the values of ek and k*. Note that all strings involved in our 

argument are well within the good range [ -10C{0k. l ,10Cl0k.I ] .  

Case I:  e k = ( + l , + l ) , k * = k + l  

Let A be the block 0k+~ if nk = nk.-~ is odd or lk+, if nk - 1 is odd. Thus A 
ends with lk and any occurrence of A in x is preceded by (a genuine) - l k .  
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Suppose now that A occurs in X[ - -2CI0k .  I ,2CI0k.  I] SO we see 

(i) -- lk ()k -- 0k . . . .  0klk (r -+0k's). 

Because there are at most r + l  -+0k's be tween --+-IE'S in y and I l k l >  

fiX+2c)I0k I (nk_, > 2  and Lemma  2 . 8 ) o n e  sees that there  must be a -+ lk in y 

overlapping (i) substantially. We suppose first that it is a - lk and show that (i) 

attracts itself. 

We claim that the - Ik in y is aligned with the - lk of (i). If this were not the 

case we would be able e i ther  to align it with the lk of (i) or right align it with the 

leftmost Ok of (i) or left align it with some o ther  --+ Ok of (i). (Here  we are again 

using Ilk 1>(~+2c)10k I.) In the first case we have 

in the second case 

and in the third case ei ther  

-Ok I lk 
Ok -- l k ::> F ( i ) ,  

Ok I - (k 
- l k l  Ok =>F(i)' 

- Ok } Ok 
ok { - l k ~ F(i) 

or  

-Ok . . . .  Oklkl  -- ik 
lkOk "'--OkOk I - - ik ."  

(Notice that in the last forcing configurat ion above we do see a Ok below the lk 

because the number  of -+Ok's be tween -+ l k's in y is at least r - 1 . )  This 

establishes our  claim. 

Now look at thc next -+ lk to the right of the - lk in y which we have just 

aligned. If it is not a + lk we see ei ther  

- lk ()k I -()k lk 
lk 0 k ' ' ' ,  - - lk Ok ::)>F(ii) 

or  

I - I k "'" 0k lk ::)' F(ii). 

Thus it is a lk, so we have shown that (i), and hence A, attracts itself. To  do this 

we started by assuming a - I k in y over lapped  (i) substantially but  if it were a 

+ Ik we could argue similarly by working towards the - lk in (i). Also, the same 
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a rgumen t  works  for  A -  and,  of course,  A ' s  and A ' s  in y [ - - 2 C [ 0 k . l , 2 C I 0 k .  I] 

also a t t ract  themselves .  

Thus  any A or A -  in x or  y which over laps  the index set [ -  C ]0k . [ ,C [0k . I ]  

a t t racts  itself. By L e m m a  2.8 there  must  be such an A or A -  in x and in y. 

M o r e o v e r  ( I - c ) l l k  [, the " r ange  of a t t rac t ion" ,  is less than ~[lk.I (nk-, > 2 ! ) ,  

that is, one  half the minimal  length of a k *-block. From this it follows that  all the 

A ' s  and A ' s  over lapp ing  [ - C I0~. l, C I0~. I] at t ract  themselves  with the same 

shift and hence x [ - C [ 0 k . I , C I 0 k . [ ]  a t t racts  itself. 

Case I1: ek = ( + 1 , + 1 ) ,  k * = k + l + l ,  l>=l 
In this case 

0k+, = 0 k ( -  + lk) ' ,  

lk+l = lk. 

Since nk.- ,  > 2  all k*-b locks  begin with a + 0 k ~  so one never  sees two -+ lk~ 'S  

in a row in a T - n a m e .  Thus  x and y are conca tena t ions  of the blocks D~ and D_~ 

where  D,  = Ok ( - 1 k )~ and D2 = ()k ( - 1 k)~§ Let  A be D,  if l is even or D2 if l + 1 

is even so A ends with a lk. If A occurs in X[--2CIOk. I,2CIOk. I] it is fol lowed 

by - 0 k  so we see 

(ii) 0 k - - l k ' ' ' l k - - 0 k  (r - + l k ' s , r > 2 ) .  

Because  there are at most  r + 1 -+ lk'S be tween  + 0 k ' s  in y we see that  there  

must be a + Ok in y left al igned with one of the k -b locks  of (ii). Let  us assume 

that  it is a Ok in y and show that  A at t racts  itself (the a rgumen t  is similar for 

- 0k). We claim that  it must  be al igned with the Ok of A. T o  see this note  that  if it 

is not al igned as c laimed,  since it cannot  be aligned with the - 0k because  of F(i), 

then we see ei ther  

Ilk - - l~ . . . lk  --0k l[~ 
0k - lk lk - lk 

or I --lk I - Ok 
O k ' "  I lk" 

Note  that  in both  cases the r ightmost  lk in y may be false but  it is p receded  by a 

genuine  lk because  the n u m b e r  of ---IE'S be tween  --- 0k'S in y is at most  r + 1. 

This establ ishes the claim. 

Now the next - Ok in y to the right of the 0k we have just aligned cannot  be  a 

0k because  then we would see ei ther  
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o r  

Ok[ [Ik - 0 k  
Ok " "  Ok - I k  :z}F(ii) 

0k I t - 0 k  lk Ok "'" - Ik Ok @ F(ii). 

Thus we have shown that A attracts itself, and the same is true of A . Now by 

Lemma 2.8 there must be an occurrence of + Ok. in x [ - C I0k. I, C 10k. []. Since 

Ok. =0k,+~ begins with 0 k ,  and ends with -+0k,~ +-- lk+~ we see that either A or 

A -  occurs in x[-C[Ok.[,ClOk.[]. Since (l--c)[lk[<~min(ID, J,ID2[) we can 

finish the argument  as in case I. 

Case II1: e k = ( + l , - 1 ) ,  k * = k + l  

Let A be 0k*~ if nk is even or lk+~ if nk - 1 is even, so that A ends with - Ik. 

Suppose that A occurs in x within the good range, so we see 

(iii) lk0k -Ok " "0k  - lk (r -+0k's). 

As in case I there is a + lk in y overlapping (iii) substantially, which we assume 

is a lk, leaving the other  case to the reader.  The lk in y must be aligned with the 

lk or (iii), for otherwise we could align it with the - lk, which is F(iv), or (as in I) 

right align it with the leftmost Ok of (i) or left align it with some other  - 0~ of (i). 

This would give either F(vi), F(v) or 

l - 0 k  0k --0k - - l k l - - i k  
--0k lk 0 k ' "  Ok -ik" 

Similar arguments  show that the next + lk in y to the right of the one we have 

just aligned is a - lk SO (iii) attracts itself. The argument  is concluded as in I. 

Case IV: e k = ( + l , - 1 ) ,  k*=k+l+l , l>-_ l  
In this case 0 k .  = O k ( - l k )  J and if 0k.~ occurs in x we see 

(iv) Ok - lk . . . .  lk -Ok (l - lk's) 

As in II there is a -Ok, say a Ok, in y left-aligned with some k-block of (iv). In 

fact it must be aligned with some k-block of (iv). In fact it must be aligned with 

the 0~ of (iv), for otherwise we get F(v) or F(iii). (If initially we found a - Ok in y 

we should work with right, rather than left, al ignment.)  If the next -Ok to the 

right in y, which is in fact a -Ok, is separated by l + 1 - l k ' s ,  rather than l 

- - l k ' S ,  o n e  s ee s  

0k - 1~ - 0 k  " 
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Thus (iv) attracts itself and the argument  is concluded as in II. 

Case V: e k = ( - 1 , + l ) ,  k * = k + l  

If a 0k§ occurs in the good range of x we see 

(v) - l k 0 k ' ' ' 0 k  lk (nk --I  0k'S, nk >2 ) .  

We can find a - lk in y overlapping (v) substantially and we assume it is a lk. It 

must be aligned with the lk of (v), for otherwise it is aligned with the - l k  

-lk r 0k l k - 0 k  f f  F(vii) 

or left aligned with the rightmost Ok of (v) 

Ok lk 
lk -Ok :~ F(viii) 

or right aligned with some other Ok 

0k r 0k lk -Ok ~ F(vii). 

If the next - lk to the left in y is separated by nk - 2 Ok 's, instead of nk - 1, we 

s e e  

- lk Ok [ lk 
-Ok - l k  "'" lk ~ F(viii). 

i 

Thus (v) attracts itself and we are done as in I. 

Case VI: e k = ( - 1 , + l ) ,  k * = k + l + l ,  l>-_l 
Let A be Ok ( -+ 1 k)t if 1 is odd or Ok ( -+ 1 ~ )~§ if l + 1 is odd. If A occurs in x we 

see 

(vi) O k l k - - l k ' ' ' l k - - O k  (r --+lk's) 

and as in II we find a -- Ok, say a Ok, in y left aligned with some k-block of (vi). It 

must be aligned with the Ok of (vi) for otherwise it is aligned with the - Ok (F(vii)) 

or we see 

o r  

- l k  lk -Ok[  - l k  
Ok l k ' ' ' - - l k [  i~ 

O• - lk -Ok 
lk lk I" 
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If the next -'-0~ to the right in y is not a -Ok we see 

1~ - ( )~  { - ( )k - lk 
0, 1~ I or - lk 0, 

both F(viii). Thus A attracts itself which is enough as in 11. 

This concludes the proof of Lemma 3.3. [] 

We can now finish proving Theorem 3.1. If there is a forcing configuration for 

infinitely many k such that nk -. > 2 then by the remarks at the beginning of this 

section A is e-r-I • T invariant for every E and r (e ---*0 and r--*~o as k ---~ ~). 

Thus A is l x T invariant and this implies that A is p, x /z  {7, prop. 2]. 

Otherwise by Lemma 3.3, for sufficiently large k such that nk-, >2 ,  

x [ - C l O k .  I,ClOk. I] attracts itself with shift ik., ] k . l < ( l - c ) l l ~  {. C can, of 

course, be as large as we wish, in particular large enough so that 

x[ - CI0~.I, CI0k. I] contains k**-blocks, which, like x[ - ClO~.l, ClOk. I], attract 

themselves with shift ik-. However, as pieces of x [ -  CI0k--I, CI0k-.I] they also 

attract themselves with shift i~... Now 

Ii~.1 + 1i~.-I < ( 1 -  c)(I lk [ + I l k . l ) <  ( 1 -  c)l 1,-. I , 

so by the uniqueness of k**-block appearances (Lemma 2.7) we see that 

ik. = i~... Similarly i~.. = ik... etc., so y is a shift of x and A is an off-diagonal 

measure. This concludes the proof of Theorem 3.1. [] 

REMARK. If there is a sequence of fractions p./q,  with p, and q, co-prime 

and q. even such that Io~-p , /q ,  I=o(q , i  2) then it is easy to see that T ~q-'2 

converges to the identity in the weak topology. It follows that the closure of 

{T ~ :k EZ} is a perfect subset of a complete metric space and so must be 

uncountable. (This observation can be found in [9, chapter 5, paragraph 2.1.4].) 

This means the centralizer of T is uncountable so T is not simple. 

w Higher  cartes ian products  

THEOREM 4.1. If cr is poorly approximable, t >  0 and v is a ( ~ I ~  T'- 

invariant and ergodic measure on X ~ with marginals tt then v is a product of 

off-diagonal measures. 

PROOF. We begin by observing that it suffices to handle the case t = 1 for if 

S = (~)l=J T and v is S'  invariant and ergodic with marginals tt then we may 

form v ' = t - ~ ( v + S v + . . . + S  ' ' v ) w h i c h  is S invariant with marginals ft. 

Moreover v' is ergodic for S : if SE = E then S ' E  = E so v(E)  = v(SE)  . . . . .  
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v(S'-1 E) is 0 or 1. Thus,  if we a l ready have the case t = 1, v '  is a product  of 

off-diagonals,  which allows us to conclude that v' is also S' ergodic,  since T is 

weak-mixing.  Since each S~v is S' invariant  and v' is an average  of these we can 

conclude that  each S ~ v, in part icular  v, coincides with v'. Thus  we shall assume 

hereaf te r  that  t = 1. 
| W e w r i t e  T " ) f o r  ~.IT. Let  8~ = - 0 , 8 2  . . . . .  8~_,= + 0 ,  s E Z +  a n d l e t  E~, 

be the set of x E X such that  the 0th co-ord ina te  of x sits inside the first k -b lock  

of the k + s -b lock  Ck,,(8~), where  it is unders tood  that  these are the t ime 0 k- 
. . . .  , - -  l-I, = ,  ) .  and k + s - b l o c k s  in x. For x (x,, x~_,)EX ~-~ set Xk(X) ' 'lE,(x, 

Deno te  product  measure  on X ~ ~ b y / z  ~ 

LEMMA 4.2. tz'-~{X ~X ' - ' :Xk (X)  = 1 i .o .}= 1. 

PROOF. For  any x E X, Ck,,(e~) occupies a p ropor t ion  of x which is bounded  

below as k---~oc. Also by the boundedness  of {nk} the first k -b lock  in Ck.,(e~) 

occupies a bounded  below propor t ion  of Ck +s (e~). Thus /x  (E  ~,) is bounded  below 

and hence so is /z~-l{x :Xk(x) = 1}. It follows that  tz~-'{x :Xk(X) = 1 i .o .}>0 .  

Now for  tz-a.a, x it is true that  for sufficiently large k the 0th co-ordinate  in x 

is not the first or last co-ordinate  in the t ime 0 k -b lock  in x, because  k -b lock  

lengths grow exponential ly.  Thus  we see that  for /z ~ J-a.a. x E X ~ ~, Xk(x) = 

xk(T"- ' x )  for sufficiently large k and so the set {x CX~-':Xk(x) = 1 i.o.} is 

T " - ~  invariant  (kt~-~-a.e.). S i n c e / z '  ~ is ergodic for T "- ' )  it follows that this set 

has measure  0 or  1, but we have a l ready seen it cannot  be 0. [ ]  

Cont inuing with the proof  of 4.1 it is sufficient, now that an induction has been  

s tar ted by T h e o r e m  3.1, to assume that every l - 1 dimensional  marginal  is p.~ ' 

and show that  v is /x( (See [7] for  details of this reasoning.)  Thus  when we 

choose x = ( x l , . . - , x~ )EX '  generic  for v we may  assume by L e m m a  4.2 that  

XE(Xl,''',X~-~) = 1 i.o. 

We adopt  a nota t ion analogous  to that  of section 3: if A ~ , . . .  ,A~ are k-b locks  

in x l , . . . , x ~ ,  1 > 2 ,  we write 

AI Ai 
i or  i 

Aa Ai 

if the initial or  final IE'S have a c o m m o n  over lap  greater  than �89 IIk I. For  l = 2 

a l ignment  will cont inue to mean  what  it did in Section 3 - -  over lap  grea ter  than 

c [ l k l .  We will also say that A , , . . .  ,A~ are strongly aligned if the initial indices 

of all the A~ are no more  than ~c Ilk l distant f rom the initial index of A , .  By 

choosing s in the definit ion of Xk sufficiently large we see that  there  are infinitely 
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many k such that the time 0 k + s-block in xj is -0k+s, the time 0 k + s-blocks in 

x2,- . . ,x t  i are all 0k+, and these k +s-blocks are strongly aligned, since their 

initial k-blocks overlap and these initial k-blocks are a small fraction of the 

length of k + s-blocks. Moreover for 0 =< i < s the time 0 k + s - i blocks in x~ 

and x 2 , . . . , x ~  will also be -0k+s-, and 0k,s-~ respectively and they will be 

strongly aligned if i is small compared to s. Choosing nk~,-, > 2 and reindexing 

we have infinitely many k such that: (i) nk > 2; (ii) the time 0 k-blocks in x~ and 

x 2 , " . , x ~  are -Ok and Ok respectively; (iii) these k-blocks are strongly aligned; 

(iv) each is the first k-block in its time 0 k*-block. 

Now for any e > 0 and r ~ Z § there is a k satisfying (i), (ii), (iii) and (iv) such 

that any finite string in x of length greater than ~cl lkl  occurring no more than 

10[0k I away from time 0 is e-r-generic for ~,. We are now going to argue that 

(v) ~, is 2 e - ( r  - 1)-invariant under ~)I=~ T u' where u, , . . . ,  ut depend on k, but 

are bounded, with at least one u, = 0 and one u ~  0. 

Once we have (v) we can finish the argument by noticing that some configuration 

of u~'s occurs for infinitely many k so we actually get that ~, is (~)I~2 T", invariant 

for some ul , . . . ,  ut as in (v). Since ~)u,,,o T ' is ergodic, ~ is the product of two 

lower dimensional marginals ([7, proposition 2]) and these are product measures 

by assumption. 

To prove (v) we again consider six cases as in Theorem 3.1, but they will go 

more quickly this time. 

Case I :  k * = k + l ,  e k = ( + l , + l )  

We can find either a -.+ Ok or a --+ lk in x~ which is left aligned with the time 0 

-0k  in x~, so this k-block in x~ and the initial --+ lk'S in the time 0 k-blocks in 

x~ , . . .  ,x~_~ have a common overlap of at least ~c Ilk I, that is, they are aligned. In 

the case of a Ok in xt we get the following configuration whose "forcing" 

character is indicated in a manner completely analogous to section 3: 

ik - 0 k  ik 
- ik 0k - ik 

- lk 0k - ik 

In this configuration the position of the leftmost ik of Xl relative to the - ik of, 

say, xz is one space further to the left than that of the rightmost ik in x, relative 

to the - ik in x2, while the - ik's in x3,...,x~ experience no such shift. Thus we 

obtain (v) with u1 = 1, u2 = u3 . . . . .  uz = 0. Similarly in case of a - 0 k  in xt we 

get forcing with ut = u~ = 1, other u~ = 0. If it is a -+ lk in x l , ' "  ,x~, since the time 
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0 k-blocks in x~, . . . ,x t  are the initial k-blocks in their k + 1-blocks, they are 

preceded by +.. lk's, so we see 

-Ok lk I -Ok 
Ok - lk Ok 

+ lk + Ok • lk 

and we have u~ = - 1, uz . . . . .  u~_~ =0 ,  u~ = - 1 or 0. 

Case H: e k = ( + l , + l ) ,  k * = k + m + l , m > = l  

Consider the time 0 k + m block in x, which is -0k~,, = - 0 k ( +  lk)" and is 

followed by a + 0k because it is the first k + m-block in a 0k.. The situation is 

similar in x2,'",x~_l so in x t , ' . ' , x H  we see 

(vi) 
-0~  lk --lk "''--+Ok 

Ok - Ik lk "'" "u 

Ok - lk l k " "  ~0k 

with the +-- 0k's strongly aligned. If a + Ok in x, is aligned with any _ Ok of (vi) we 

get forcing immediately as in I. Otherwise we can find a - Ok in X~ right aligned 

with some + lk of (vi), so we see 

--Ok lk . . . .  ]k[ --Ok Ik " ' "  lk [-Ik 
Ok - l k  "'" lk[ Ok --lk . . . .  lk t lk 

: o r  : 

--+lk u "'" +'Ok ~ l k  + lk  "-" -+Ok -T-lk 

(note that the + 0k's in x~ are separated by at least m + lk's.) 

C a s e s l l l a n d l V :  ek = ( +  1,--1) 

Looking at the time 0 k-blocks in xt , . . .  ,xt_, and left aligning something in x~ 

with them we see 

- l k  

lk 

lk  

+lk  

-Ok 

Ok 

Ok 

- Ok 

or  

- l k  

lk 

lk  

• 

-Ok 

Ok 

Ok 

+ lk  

Case V: e k = ( - 1 , + l ) , k * = k + l  
The time 0 k*-block in xl begins with at least two -Ok's  and there must be a 

+ Ok in x~ aligned with one of them. Thus we see 
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- 0 k  - ik 

0k ik 

0, ik 

Case W: ~ k = ( - 1 , + l ) , k * = k + m + l , m > = l  
This is similar to II. We can rule out the possibility that a • 0k in x~ aligns with 
---0k in x,, so as in II we must have 

10k - l k  +lk  . . . .  lkl I-0k - 1 ,  "'" lk 
Ok lk - l k  "'" lk] I Ok lk . . . .  lk 

! or : 

O~ ik -1~ "'" lk G lk - I k  
lk •  "'" ~ ik  • •  ~ lk  • 

- ik  
ik 

lk 
--+ik 

This concludes the proof of 4.1. [ ]  

w Connection with topological analogues and other remarks 

Suppose gt is a homeomorphism of a compact metric space (Y, d). According 
to Furstenberg, Keynes and Shapiro [4] (Y, if') is proximal orbit dense (POD) if 
it is minimal, no factor of gt is a rotation on a finite number of points, and 
whenever x , y ~ Y  with x ~ y  there exists {ni}CZ and k ~ 0  such that 
d ( g  r ~kx, ~ n , y ) ~ 0 .  They showed, among other things, that a class of flows, 
which includes (topological models of) the T's of this paper for all irrational a, 
consists of POD flows and that POD flows are topologically prime and have 
trivial topological centralizer. There is a close analogy between simplicity and 
the POD property. In particular if (Y, ~ )  is POD then the only g' x O-minimal 
subsets of Y x Y are the "off-diagonals" Ak = {(y, ~ky) :  y E Y}. This weaker 
property is easily connected with simplicity. 

PROPOSITION 5.1. If ( Y, ~)  is strictly ergodic with unique invariant probability 
Iz and the measure-preserving system ( ~,l~ ) is simple then the only minimal 
subsets of Y • Y are the off-diagonals. 

PROOF. By minimality supp/~ = Y. If M C Y x Y is minimal, then letting v 
be an invariant ergodic probability with supp v = M, v has marginals /~ by 
unique ergodicity. Since (~, # )  is simple i, is an off-diagonal or product measure. 
In the first case M = supp u = A~ and the second case cannot occur because 
supp(/~ x/~) = Y x Y which is not minimal. [] 
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The next proposition shows that simplicity implies POD under certain 

conditions which are satisfied by T for poorly approximable a. Say that the flow 

( Y . ~ )  is weakly distal if for any x , y ~  Y, (2n+I)-'EL ,d(~'x,~'y)--~,O 
implies x = y .  Obviously ( Y , ~ )  distal implies ( Y , ~ )  weakly distal, but the 

converse is not true as we shall see. Note that (2n + I) -' >?-7 .... d(~'x,  ~'y)---~0 is 

equivalent to the statement that for each e > 0 ,  { i E Z : d ( g " x , ~ ' y ) > e }  
has density 0, so the definition of weak distality is independent of the 

choice of metric. Also if ~ is the shift on l'Z, 1" finite, then 

(2n + I)-'ET~ ~d(~'x,  ~ ' y ) ~ 0  (d any metric inducing the product topology) is 

equivalent to the statement 

d(x ,y)  = !im| 2 n ~  # { - n  -<_i -< n : x ( i ) ~  y(i)} = 0 ,  

by the same density characterization. We will also use the notation 

d . =  lim l # { 0 < = i < = n _ l : x ( i ) r  

PROPOSITION 5.2. If Y is infinite and ( Y, ~)  is strictly ergodic and weakly 
distal with inoariant probability p. and (~,/.t) is simple then (Y ,~ )  is POD. 

PROOF. First, since Y is infinite and minimal, (~, /z)  is not a finite rotation so 

its simplicity implies that it is weak-mixing (see the remark at the end of section 1 

in [12], where the non-atomic nature of /z is assumed though not explicitly 

mentioned). It follows that a continuous eigenfunction of ~ must be constant 

/z-a.c., hence constant, since suppp. = Y. Thus ~ has no finite rotation factors. 

Now if x, y E Y with x ~  y choose a measure v on Y x Y such that (x,y) is 

quasi-generic for v, that is, there is {n,} C Z ~ such that 

1 
(i) w*-lim 2n, + 1 ~ =_,, 

~5, the point mass at z. Since v is ~ x g'-invariant (but not necessarily ergodic) 

and has marginals p. by unique ergodicity, we can write 

(ii) v = c(p, x / z ) +  ~ CktZk, 

where txk denotes off-diagonal measure on z~k. (Here one uses the fact that the 

extreme points of the convex set of ~ x ~/'-invariant measures with marginals/z 

are all ergodic.) If ck > 0 for some k ~  0 let h(t) be a continuous function on R" 
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such that h (0) = I and h (t) = 0 for t _-> e and set f(x, y ) = h (d (gtk x, y)). Integrat- 

ing (i) against f we find that 

t 

2 n , + l  . . . . . .  

so there must be values of n such that f ( ~ ' ~ x , ~ ' y ) > 0 ,  that is 

d ( ~ V k ~ ' x , ~ ' ~ y ) < e .  Since this is true for all e we obtain {n,} such that 

d ( f f t ' , ~ k x , ~ ' , y ) - * 0 .  Similarly, if c >0 ,  define f in the same way (for any 

choice of k ~  0) and again ffdu >-_ cf[dlz • Ix > 0, since f > 0 on a neighborhood 

of zlk and supp/x • = Y • Y. 

Thus we may assume cfj is the only non-zero coefficient in (ii), so u =/.to, for all 

choices of {n,} giving w*-convergence. Thus we actually have 

In particular 

w*-lim 2 - ~ +  1 ~ 8,,,,.,,,~ = p~o. 
i = . n  

2n+l l  .... ~ d(ttr'x, ~ 'y ) - -*  f d(x,y)dg,,=O, 

so x = y since 1/: is weakly distal. [] 

We now describe the appropriate topological model of T, as defined in [4]. Let 

p :[0, 1)---, {1,-  1} z 

be the map which associates to x • [0, 1) its To-name as described in Section 2. 

Observe that for x, y G [0, 1), if we allow y to converge to x from the right then 

p(y)--~p(x). Choosing {n,} such that T2,(O)---~x from the right we see that 

p(x)E ~,,(p(0)), the closure of the orbit of p(0) under the shift o'. Thus if we set 

Z = (p[0, 1))-, Z coincides with ~',, (p (0)). Note that p(0) is the same whether one 

uses [0,~) to define T,,-names or [0,~1 as in [41. 
The flow (Y, ~ )  of [4] is obtained by adding a homeomorphic copy of 

B ={z ~EZ:x(0) = 1} to Z and delaying o- by one time unit on B. Thus it is 

topologically conjugate in an obvious way to the shift acting on the closed shift 

invariant set of sequences in { I , -  1} z which are obtained by doubling the l's in 

each sequence z E Z (sequences z E B give rise to two doublings, one the shift 

of the other). We take this as the definition of (Y, ~'). 

PROPOSITION 5.3. I[ a is poorly approxirnable, ( Y, tp ) is strictly ergodic, weakly 
distal and POD. 
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PROOF. We claim that each z E Z is, for each k, uniquely a concatenation of 

T~-k-blocks having the structure of a To-name as described in Lemmas 2.5 and 

2.6. (This does not mean that every z E Z  is a T~-name although all but 

countably many are, by [4, proposition 1.1].) To see this note that for any n, 

z[-  n,n] is part of a To-name and hence is a concatenation of T~-k-blocks. The 

same is true of z [ - n',  n'] for n '  > n. Each full k-block which together with its 

flanking -+ l 's appears in z [ - n, n ] also appears in z [ - n', n'], which is part of a 

T,-name, so by Lemma 2.5 that full k-block must be one of the k-blocks in the 

k-block structure of z [ - n ' ,  n']. Thus as n increases the k-block structures of 

z [n, n] extend each other so we see that z is a concatenation of k-blocks. The 

remaining properties of 2.5 and 2.6 follow immediately as they are "local" 

properties. This establishes the claim and as a consequence we have that every 

y E Y is uniquely a concatenation of T-k-blocks with the properties of Lemma 

2.7. 

For z E {1, - 1} z denote by z .  the restriction of z to [0,~). Taking {n,} such that 

n , ~ + ~  and T",O--->O from the right we see that any finite segment of p(0) 

appears in p(0)+, hence in A~(0) for some k, since p(0)§ begins with Ak(0). On 

the other hand for any z E Z, Ak (0) appears in z (in fact Ak (0) appears in any 

k'-block for k '  sufficiently large) so p(O)E~(z). Thus (Z,o') is minimal. 

Moreover, by unique ergodicity of To, given r, for sufficiently large k any 

To-k-block has approximately correct frequency of finite strings of length less 

than r. Since any z E Z is a concatenation of k-blocks we obtain the unique 

ergodicity of (Z,o'). Minimality and unique ergodicity of (Y,W) follow im- 

mediately. (So far we have used only irrationality of a.) If v is the unique 

invariant probability on Y then the measure-preserving system (~ ,v )  is 

isomorphic to T. 

In the proof of Theorem 3.1 we showed that if y~ and y2 are T-names and 

yl E 6,(y2) then (y~, y2) contains a forcing configuration of k blocks for infinitely 

many k. However we only used the k-block structure of yl and y2 so the same is 

true for y,,  y2 E Y. Any sufficiently long segment of a k-block differs substan- 

tially in d from its shift, so we see that 

1 
lira ~ # { -  n =< i =< n : y , ( i ) #  y2(i)}>0. 

On the other hand if yl = qt~y2, k # 0 ,  then d(y~,y2) exists and is not 0 because 

(~k,v)  is ergodic (even weak-mixing). Thus ( Y , ~ )  is weakly distal and by 

Proposition 3.2 it is POD. [] 

Since POD flows can never be distal Proposition 3.3 furnishes examples of 

weakly distal but not distal flows. 
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In connection with Propositions 3.2 and 3.3 we mention another example of a 

POD flow. Chac6n's example of a weakly-mixing but not mixing automorphism 

(see [3], also [5], [7]) can be described as follows. Define k-blocks xk by 

X~ = 0010,  Xk§ = XkXk ]Xk 

and let ~ C{0,1} z consist of those sequences x such that each finite segment of x 

is a segment of xk for some k. It is easy to see that equivalently x E (~ if and only 

if x is, for each k, uniquely a concatenation of k-blocks with a 1 interposed 

between some k-block pairs. Then ~ is closed, shift invariant and strictly ergodic 

with invariant probability/z, say. It was shown in [7] that (o-,/z) is simple (even 

has minimal self-joinings). Moreover the argument of [7] essentially showed that 

if x, y ~(9 and x ~ . ( y )  then one has "forcing" k-block configurations 
infinitely often, so that d(x, y ) ~  0. Since d(x, crkx)~ 0 for k ~ 0 (~, or) is weakly 
distal and hence POD. 

We conclude by mentioning several questions raised by this work. We have 

seen that if l a - P , / q ,  I = o(qi  ~-) with (pn,q,) = 1 and q, even, then T is not 
simple. It is likely that this is true without any restriction on q, so T is simple if 

and only if a is poorly approximable. However one can ask whether T may still 

be prime when a is well approximable. This would require a new-approach as 

previous proofs of primality have always been something close to establishing 

simplicity. If a is evenly well approximable T admits good cyclic approximation 

in the sense of [9]. This is incompatible with triviality of the centralizer, but not, 

as far as is known, with primality. A proof of primality for some S admitting 
good cyclic approximation might give some approach to the question of the 

category, with respect to the weak topology, of the class of prime automor- 
phisms. One could also ask about existence of roots of T for well approximable 

a. Examples of automorphisms admitting good cyclic approximation without 
roots are known [2] but it is not known what the category of the class of such 
automorphisms is. 

Finally, the question of loose Bernoullicity of the cartesian square T • T is 

open for any irrational a and also for Chac6n's automorphism. 
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